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ABSTRACT

An algorithm is presented which finds the best-fitting
pair of constants, in the least squares sense, to a set of
scalar data; we call this pair of constants the AbimeadA-e
of the data. The relationship of the bimean clustering to
the ISODATA clustering algorithm, and its application to
image thresholding, are also discussed.
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1. Introduction

Let us first consider the following minimization problem:

n
minimize f = (x.-P~)2  (1)i=l1

where we may assume without loss of generality that X-2

xn . It is well known that f is minimized when p is the aver-

age of the xi, that is,
n
Z x (2)=ni=l1

We now extend this to the following minimization problem:
n

minimize f E (min((x-.&) 2 (x.- V) 2 (3)
i=l1

That is to say, we are interested in the best fitting pair of

constants to the set x ,. .*,xn of data. We refer to this pair

of constants (P,v) as the bimean. This is because, as we shall

see,
k.4 1

k i= i k

(n-k) xi --k+l
for some k, l-kn. That is, the constants V and v are such

that they are averages or means of subsets of the n data points.

We are interested in the bimean because it defines a

natural clustering of the x's into two subsets. For example,

if the x's are the gray levels of pixels in an image, cluster-

ing can be used to segment the image, e.g., into objects and
- background. Velasco [1] recently showed that the segmentation

can be done with the ISODATA clustering algorithm. We will



show that the ISODATA algorithm should ideally converge to

the bimean clustering result, but that there are cases

where even this ideal clustering approach does not select

the appropriate threshold.

This minimization problem has attracted much recent

interest. Hartigan and Wong [21 present an algorithm for

k-mean clustering which produces a global minimum only for the

two-mean case. Pollard [3] discusses the convergence of

the k-mean clustering. We consider this question briefly in

Section 4 and show that the two-class case of the ISODATA

clustering algorithm is relevant to the bimean. Fisher

[41 discusses algorithms for clustering, but does not con-

sider the special case of two means.

In Section 2, we develop the bimean clustering algorithm,

and in Section 3, we show how the algorithm is applied to

image segmentation. Concluding comments are presented in

Section 4.
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2. The Bimean Clustering Algorithm

In this section we present an algorithm to compute the

values of p and v such that
. n

f E min((xi-)2 , (xiV)2 (5)
".-V i=l

is minimized where XlX 2 <..<xn. First note that since f

is continuous and f>O, a minimum exists. We shall show that

if among the n>l values Xl1.**,xn there are at least two dis-

tinct values, the minimum is attained for some U<v.

k 2
Theorem 1: Let f(p) = Z (x.-p) where x X _S..._5x k . Then

there exists one value of g at which the minimum is attained,

given by
".. k

k Ex (6)
i=l

and for U*, f(p)>f(U*).

Proof: With * as defined above, we may write

k
f)" (xi-)2 7)

as f() E (xi-.*+I*-.)2 (8)

which can be expanded as

k k 2k
f(ii) -E (xi-1A*)2 + E W-0Ii) 2 + 2(p.a1.*) Z u-xi

2 2
• E (x-1*)2 + k(u-*) (9)

since the last term is zero with U* as defined above. The mini-

mum is obtained when p-p*, and for pj*, f(V)>f(p*). I
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We now consider the function

n 2 2
f(p,v) = E min((xi-) , (xi-v ) (10)

i=l

As a corollary to Theorem i, we now show that the minimum of

f(ji,v) cannot occur for i=-v.

Theorem 2: If the n>l values xi5x2 5 ...5xn contain at least

two distinct values, the minimum is attained for some p<v.

Proof: We assume to the contrary that the minimum is attained

for P=v. Theorem 1 implies a minimum at
-'"1 

n
- E x(11)

Therefore U<xn , because xI ,...,x n contain at least two dis-nn

tinct.- values. We now consider

- 2 1 2 (2
f(ji,x = E min((xi-) (xi-xn) (12)

i=1

and we see that
*n-i f ,xn r: (xi- )2

n i=1

and also that
I-'Zn-I

n- 2 -2E(xi_5) 2< E (x i-11)

i-l i-i

since xn-P>O.
n n2

Since fl( ,j1 - E (xi_) and from Theorem 1 follows that
i-i

this expression attains the unique minimum at (p,0).

We see that f (j,x <f(, )n

which is a contradiction to our assumption that f(u,v) is

... 2* - '*-. .; .



minimized when u=v. We conclude that pitv if the n>l values

x 1X 2..._xn contain at least two distinct values. iI

From the very definition, it follows that f(p,v)-f(v,p).

With this fact and Theorem 2, we can restrict the domain of

definition of the function f(p,v) to be {(Pv): ji,v(IR and

V<V}.

We now define the numbers Uk and vk to be

kk k £m xi
i-i

1 "n
Vk E n-k £x (13)k n-ki-k+1 i

for all k, l5k-n. We prove our final theorem from which the

bimean clustering algorithm follows.

Theorem 3: If (P*,v*) is the minimum of f(iiv) for U<y then

there exists an index k such that

V[1 - 1 k' v* -v.
<1. .

Xk-(P*+v)

... Xk 1 ( +V*) (14)

Proof: Let k be the largest index such that

Xk  U 2*+ 1

is true. We can write f (0*,v*) as
k 2

f (*V*I Z (xi-p*)2 + E (x -v*) (15)
il i-k+l

Assume to the contrary that )*IP k or v*O

Case 1: P*#P k .

Consider f(lpk,v*) - £min((xi-2k )  (xi-v*))
i-I



k 2 2
E (x i_"k) + (xiv*) 2 16)i-i 1i=k+l

By Theorem 1, the first term of equation (16) is minimized,

thus
k 2 n2

f(1*,lv*) > E (xi-Uk) + Z (xi- *) (17)
i=l i=k+l

From equations (16) and (17)
f flUk' v*) < f (Uv*)

and we have achieved a contradiction to the assumption that

the minimum of f(p,v) is attained at (V*,v*).

Case 2: v*Ov k .

The proof for this case is analogous to that for the first

case and shall be omitted. Thus we have shown that U*=Uk

-,and v*-v for some k, lk-n. 11

With Theorem 3 in hand, we present the bimean clustering
'-U-

algorithm:

Step 1) Find the set K of indices which satisfy

Xk+l> 1(Pk+vk)
Step 2) For all k(K evaluate f(1uk, vk)

Step 3) Find the minimum of f(Ukvk) for all kEK. Set

u*-ij and v*-vi where J is the largest element

of K for which the minimum is attained.
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3. Application to thresholding

A possible application of the bimean is to segment an

image so as to separate objects from their background, by

clustering the gray levels of the image's histogram into

two clusters. Thus, the index k in the bimean clustering

algorithm is the gray level above which the gray levels be-

long to the objects, and the cluster of gray levels below

the index k belong to the background.

Figure 1 shows results of applying the bimean clustering

algorithm to a set of infrared images of tanks. The original

images are shown in the first column, and the bimean results

in the third column. The second column shows ISODATA results

(see below), with the initial threshold taken at the mean

gray level of the image. We see that the first five images are

reasonably segmented by the bimean algorithm, but the last

three are not; and the ISODATA results are not as good (e.g.,

the fourth image is poorly segmented).

Velasco Il] showed that a two-class, one-dimensional ISODATA

clustering algorithm (e.g., [5]) could be used to segment images

into two gray level classes. Our experiments show that this

is not always the case. ISODATA is an iterative process based

on the same distance measure that we are minimizing in the bimean

algorithm; but ISODATA may converge only to a local minimum of

this measure, whereas our algorithm finds the global minimum.

In spite of this, we do not always obtain good thresholds, and

neither does ISODATA.
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4. Discussion and concluding remarks

We have presented a new algorithm for clustering single

dimensional data into two clusters. The computation is

relatively quick, and the equations can be rewritten so as

to only perform a single pass through the data.

The ISODATA algorithm should ideally converge to the Bimean,

but this requires a suitable initial choice of means for

ISODATA. For example, if the second mean is set equal to

-. one outlier, the ISODATA algorithm converges but possibly not

to the true bimean. Thus, the Bimean algorithm is a more

reliable method of obtaining a globally optimal threshold than

iterative algorithms such as ISODATA. Figure 1 shows, however,

*that this method does not always perform well in practice.
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